Interventional¶
Operations¶
- chirho.interventional.ops.intervene(obs, act: Intervention[T] | None = None, **kwargs)[source]¶
- chirho.interventional.ops.intervene(obs: Tensor, act: AtomicIntervention[T] | None = None, *, event_dim: int = 0, **kwargs) T
- chirho.interventional.ops.intervene(obs: bool, act: AtomicIntervention[T] | None = None, *, event_dim: int = 0, **kwargs) T
- chirho.interventional.ops.intervene(obs: float, act: AtomicIntervention[T] | None = None, *, event_dim: int = 0, **kwargs) T
- chirho.interventional.ops.intervene(obs: int, act: AtomicIntervention[T] | None = None, *, event_dim: int = 0, **kwargs) T
- chirho.interventional.ops.intervene(obs: pyro.distributions.Distribution, act: AtomicIntervention[pyro.distributions.Distribution] | None = None, **kwargs) pyro.distributions.Distribution
- chirho.interventional.ops.intervene(obs: Dict[K, T], act: Dict[K, AtomicIntervention[T]] | Callable[[Dict[K, T]], Dict[K, T]], **kwargs) Dict[K, T]
- chirho.interventional.ops.intervene(obs: collections.abc.Callable, act: CompoundIntervention[T] | None = None, **call_kwargs) Callable[..., T]
Intervene on a value in a probabilistic program.
intervene()
is primarily used internally inDoMessenger
for concisely and extensibly defining the semantics of interventions. This function is generically typed and extensible to new types viafunctools.singledispatch()
. When its first argument is a function,intervene()
now behaves like the current observational.do effect handler.- Parameters:
obs – a value in a probabilistic program.
act – an optional intervention.
Handlers¶
- class chirho.interventional.handlers.Interventions(actions: Mapping[Hashable, AtomicIntervention[T]])[source]¶
Intervene on values in a probabilistic program.
DoMessenger
is an effect handler that intervenes at specified sample sites in a probabilistic program. This allows users to define programs without any interventional or causal semantics, and then to add those features later in the context of, for example,DoMessenger
. This handler usesintervene()
internally and supports the same types of interventions.
- chirho.interventional.handlers.do(fn: Callable, actions: Mapping[Hashable, AtomicIntervention[T]])[source]¶
Convenient wrapper of
Interventions
Intervene on values in a probabilistic program.
DoMessenger
is an effect handler that intervenes at specified sample sites in a probabilistic program. This allows users to define programs without any interventional or causal semantics, and then to add those features later in the context of, for example,DoMessenger
. This handler usesintervene()
internally and supports the same types of interventions.